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On the creation of a stable and convex static meniscus, 
appropriate for the growth of a single crystal ribbon, in 
strictly zero gravity by E.F.G. technique, with specified 
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In this paper it is shown in which kind a stable and convex static meniscus, appropriate for the growth of a single crystal 
ribbon with specified half thickness, can be created in strictly zero gravity by choosing the pressure of the gas flow 
introduced into the furnace (for release the heat). The method is based on explicit formulas established for materials for 
which the contact angle αc and growth angle αg satisfy: 0<αc<π/2; 0<αg<π/2; αc<π/2-αg  . The dependence of the obtained 
static meniscus shape and size on the shaper half thickness is also discussed. The procedure is numerically illustrated and 
the results are compared with those obtained on the ground. 
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1. Introduction 
 
The conventional melt growth techniques, as 

Bridgman growth [1-3] or Czochralski pulling [4-16] of 
single crystals typically produce ingots of circular or 
square cross-section which need to be cut into hundreds of 
slices to produce wafers for radiation detection, infrared 
optics, substrate for opto-electronics and micro-electronic 
applications. Using these processes, it is difficult to 
produce thin wafers from an ingot without wasting 40-
50% of material as kerfs during the cutting process. For 
this reason the E.F.G. technology can be more appropriate 
to produce single crystals with prescribed shapes and 
sizes, which can be used without additional machining. 
Successful Si ribbon growth was reported in [17-43] and 
Ge ribbon growth was reported in [44]. 

A requirement of a successful constant half – 
thickness ribbon growth is that at the point where the 
solidification takes place the angle between the tangent 
line to the meniscus free surface and the vertical is equal 
to the growth angle 

gα , i.e. the tangent line to the ribbon 
wall is vertical (Fig. 1). When this requirement is satisfied, 
then we say that the meniscus is appropriate for the growth 
of a ribbon with constant half-thickness. When the half-
thickness 1x  of the ribbon, which has to be grown, is a 
priori given, then the x  coordinate of that point (where 
the solidification takes place) has to be equal to 1x  and the 
following condition is satisfied: )2tan()(' 1 gxz απ −−= .  

During the growth on Earth, the temperature gradients 
in the melt generate buoyancy driving forces and thermal 

convection in the melt [45 – 47], which result in a “nearly 
completely” mixed melt [47]. Crystals grown from well 
mixed melts exhibit a nonlinear variation of the dopant 
concentration along the growth axis [48]. On the other 
hand, crystals grown from a quiescent melt, after an initial 
transient, exhibit a uniform axial dopant distribution [49]. 
Thus reduction of the magnitude of the buoyancy forces 
by processing semiconductors in a low gravity 
environment has been pursued over the past decades. The 
effectiveness of space processing for the growth of 
chemically uniform crystals is supported by experimental 
and theoretical studies. For example, the InSb crystal 
reported in [50] exhibits axial segregation profiles that are 
characteristic of diffusion – controlled mass transfer 
growth. 

In [45-46] it is shown, based on modeling studies, that 
the low – gravity levels reached in space are sufficient to 
inhibit interference of thermal convection with segregation 
in small – diameter Ge and GeSi melts.  

The above analysis has been performed using constant 
values of the gravitational acceleration. In [51, 52] there is 
a study of the influence of non steady gravity on the 
thermal convection during microgravity solidification of 
semiconductors. The study corresponds to the use of a low 
– duration low – gravity vehicle, such as sounding rockets 
and KC-135 aircrafts, for low gravity crystal growth 
experiments. In these vehicles, low – gravity periods of 20 
seconds and 6 minutes, for KC-135 aircraft and sounding 
rockets, respectively, are achieved at cost that are at orders 
of magnitude smaller than space experiments. 

The objective of this paper is to give a procedure for 
the determination of the pressure gp of the gas flow, 
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introduced in the furnace for release the heat, in order to 
obtain a meniscus, which satisfies the requirement 

( )gxz απ −−= 2tan)(' 1   in strictly zero gravity, when 

1x  is a priori given. Moreover, to verify that for the 
obtained meniscus the energy of the melt column is 
minimum (i.e. the meniscus is static stable). The thermal 
problem concerning the setting of the thermal conditions, 
which assure that for the obtained meniscus the 
solidification conditions hold at the point ( ))(, 11 xzx , is 
not the subject of this paper. In the paper the dependence 
of the gas flow pressure gp (which has to be used) on the 
shaper half thickness size is also analyzed. 

 
 
2. The meniscus free surface equation  
 
For single crystal ribbon growth by the edge-defined 

film-fed growth (E.F.G.) method in strictly zero gravity, in 
hydrostatic approximation the free surface of the static 
meniscus is described by the Young-Laplace capillary 
equation [53, 54]: 
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Here: γ is the melt surface tension; ρ denotes the melt 
density; 
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denote the main normal curvatures of 

the free surface at a point M of the free surface and p is the 
pressure difference across the free surface: 
 

gm ppp −= .                        (2) 
 

Here: pm denotes the pressure in the meniscus melt (under 
the free surface) and pg denotes the pressure of the gas 
flow introduced in the furnace (above the free surface). 

To calculate the meniscus free surface shape and size 
it is convenient to employ the Young -Laplace eq.(1) in its 
differential form: 
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Fig. 1. Convex meniscus geometry in the ribbon growth by E.F.G. method. (3D representation). 
 
 

This form of the eq.(1) can be obtained as a necessary 
condition for the minimum of the free energy of the melt 
column [53, 54]. 

For the growth of a single crystal ribbon of half 
thickness 011 0, xxx << = the shaper half thickness; the 
differential equation for plan symmetric meniscus surface 
is given by: 

( )[ ] 2
32'1" zpz +−=

γ
      for  010 xxx ≤≤<       (4) 

which is the Euler equation for the energy functional of the 
melt column [55]: 
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( ) ( ) ;0;0 01 =>= xzhxz  
 

When the meniscus is appropriate for the growth of a 
ribbon with constant half-thickness 1x , then the solution 

)(xz of the eq.(4) satisfies the following conditions: 

a.  ( ) ( )gxz απ −−= 2tan' 1  

b.  ( ) cxz αtan' 0 −=  

c.  ( ) 00 =xz  and  ( )xz  is strictly decreasing on 

[ ]01, xx , 

Here: 00 >x is the shaper half-thickness; gα is the 

growth angle; cα is the contact angle between the 
meniscus free surface and the edge of the shaper top and  

20 πα << c ; 20 πα << g ; gc απα −< 2   (Fig.1). 

Condition a. expresses that at the point ( ))(, 11 xzx  which 
is the left end of the free surface, where the thermal 
conditions for the solidification have to be assured, the 
tangent to the crystal wall is vertical.  
Condition b. expresses that at the point ( ))0(, 00 =xzx , 
which is the right end of the free surface, the contact angle 
is equal to cα .  
Condition c. expresses that the right end of the free surface 
is attached to the outer edge of the shaper.  
   Usually eq.(4) is transformed into the system: 
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for which conditions a - c become: 
 

gc xxxz απααα −=== 2)(;)(;0)( 100 ; )(xz  

is strictly decreasing on [ ]01, xx .                                  (8) 
 

3. The dependence of the meniscus shape  
    and size on the pressure difference across  
    the free surface 
 
In [55] the following results were established: 

Statement 1. [55] If  1>n and for n
xx 0

1 =  there 

exists a solution )(),( xxz α of the eqs.(7) which satisfies 

(8) and 0)(" >xz on ⎥⎦
⎤

⎢⎣
⎡

0
0 , xn

x , then for the pressure 

difference p across the free surface the following 
inequality holds: 
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Comment: Statement 1 shows that in order to create 

an appropriate static meniscus with a convex free surface 

on ⎥⎦
⎤

⎢⎣
⎡

0
0 , xn

x , the pressure difference p across the free 

surface has to be chosen in the range given by the 
inequality (9). Formula (9) can be useful for a rough 
evaluation of p  when the ribbon half-thickness 1x  

(which has to be grown) is a priori given by n
xx 0

1 = . 

Statement 2. [55] If for 01 =x  eqs.(7) has a solution 
( )(),( xxz α ), which satisfies (8) and 0)(" >xz , then 
the pressure difference p  satisfies the following 
inequalities: 
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Comment: Formula (10) can be used for a rough 

evaluation of the pressure difference p  when the ribbon 
half-thickness has to be close to 0. It follows, for example, 
that if for p  the following inequality holds: 

( )
g
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x
p α

ααπ
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⋅
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then doesn’t exist appropriate static meniscus having 
convex free surface. 

Statement 3.  [55] If the pressure difference p across 
the free surface satisfies: 
 

( )
1;cos2

1 0

>⋅
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⋅⋅
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−< n
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np c
gc α

ααπ
γ     (12) 

 

then there exists 1x  in the range ⎥⎦
⎤

⎢⎣
⎡

0
0 , xn

x  and a 

solution )(),( xxz α of eqs.(7) which satisfies (8) on 

[ ]01, xx  and 0)(" >xz . 
Comment: In other words, if the pressure difference 

p  is chosen such that inequality (12) holds, then for a 
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certain 1x  in the range ⎥⎦
⎤

⎢⎣
⎡

0
0 , xn

x an appropriate static 

meniscus, having a convex free surface is obtained. 
Statement 4.  [55] If 0<p , then a solution 

)(),( xxz α of eqs.(7) which satisfies ( ) 00 =xz  and 

( ) cx αα =0  verifies 0)(" >xz  and vice versa.  
Comment: In other words, potentially appropriate 

convex static menisci can be obtained only for 0<p . If 
0>p , then the solution )(),( xxz α of eqs.(7) which 

satisfies ( ) 00 =xz  and ( ) cx αα =0  verifies 0)(" >xz  
and the meniscus is not appropriate for the growth of a 
ribbon with constant half - thickness. 

Statement 5.  [55] If for nn << '1  and p the 
following inequalities hold: 
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then there exists ⎥⎦
⎤

⎢⎣
⎡∈ ', 00

1 n
x

n
xx  and a solution 

)(),( xxz α of eqs.(7) which satisfies (8) on [ ]01, xx  and  

0)(" >xz . 
Comment: Inequalities (13) are useful for locate the 

pressure difference when the half  thickness 1x  of the 
ribbon which has to be grown is in the range 
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', 00
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x . 

Statement 6. [55] If a solution )(),( xxz α  of the 

eqs.(7) which satisfies (8) is convex  ( )0)(" >xz , then  
)(xz is a minimum for the energy functional of the melt 

column, i.e. the static meniscus is stable. 
 
 
4. Procedure for the determination of the  
    pressure of the gas flow 
 
Assume that in strictly gravity the ribbon half-

thickness which has to be grown (from a specified material 
by E.F.G. technique) is equal to 1x  and for this purpose 

we have chosen a shaper of half-thickness 0x . In order to 
find the pressure difference p  across the free surface 
which has to be used for the creation of an appropriate 
meniscus, the following limits, presented in the previous 
section, are considered: 
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Now consider 
1

0
1 x

xn =  and )(),( 11 nLnL .  

• For p in the range ]( )(, 1nL∞−  the obtained 
convex meniscus is not appropriate because its half-
thickness is more than the desired half-thickness 

1

0
1 n

xx = , according to the Statement 3. 

• For p in the range ( ))(),( 1 +∞LnL  the 
obtained convex meniscus is not appropriate because its 
half-thickness is less than the desired half-thickness 

1

0
1 n

xx = , according to the Statement 3. 

• For p in the range ( )0),( +∞L  the obtained 
convex meniscus is not appropriate because the growth 
angle is not reached on it, (i.e. the obtained half-thickness 
is negative) according to the Statement 2. 
• For p in the range ( )∞+,0  the obtained 
meniscus is concave and the growth angle can not be 
reached on it, according to the Statement 4. 
• For )( 1nLp = solving equation 

)()( 1nLnL = we find 11' nn < and the fact that for this 
particular value of p the obtained meniscus half-thickness 

is in the range ⎥⎦
⎤

⎢⎣
⎡

',
1

0

1

0
n

x
n

x , according to the Statement 

5. This meniscus is not appropriate since its half-thickness 
is more than the desired one. 
• For an appropriate convex meniscus, according to 
the Statement 1, the pressure difference gm ppp −=  

has to be searched in the range [ ]))(),( 11 nLnL . A 
particular value of the pressure difference 

gm ppp −= in this range is )(+∞L . If for 

)(+∞= Lp  the computed ribbon half-thickness 
(obtained by numerical integration of the eqs.(7) for 

0)( 0 =xz and cxz α=)(' 0 ) is less than the desired half-

thickness 1x , then p has to be in the range 

[ ])(),( 1 +∞LnL . If the computed half-thickness is more 
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than 1x , then p has to be in the range [ ])(),( 1nLL +∞ . The 

exact value of gm ppp −=  in the range [ ])(),( 1nLL +∞  
or in the range [ ])(),( 1 +∞LnL  respectively, is found by 

numerical integration of the eqs.(7) for 0)( 0 =xz and 

cxz α=)(' 0 ) for different values of p in the considered 
ranges. 
For the numerical data:  

 
[ ] [ ] [ ] [ ] [ ]mNmkgradradmx gc /10622;/10538.5;209.0;814.0;104 3334

0
−− ⋅=⋅===⋅= γραα  

 
using the soft MATHCAD Professional 13, the procedure 
was applied in two cases:  

)2(][102 1
4

1 =⋅= − nmx  and 

)4(][10 1
4

1 == − nmx , respectively.  
The possible pressure ranges, which were 

investigated, can be seen in Fig.2. on which the limits as 
functions of 1>n  are represented. 
 

 
 

Fig. 2. The possible p  ranges which have to be investigated for  
 

][104 4
0 mx −⋅=  and .4;2=n  

 
For ])[102(2 4

11 mxn −⋅== the range 

[ ]))(),( 11 nLnL  is equal to 
][]47.353;7.1169[ Pa−− .  

The pressure ( )∞+L  is equal to ][85.584 Pa−      

][85.584)( PaL −=+∞   

The pressure )(+∞L is equal to  

][73.176)( PaL −=+∞ . 
The enumerated ranges of p for which the obtained 
meniscus is not appropriate are: 

]( ]( 85.584,)(, 1 −∞−=∞− nL ; 

( ) ( )73.176,47.353)(),( 1 −−=+∞LnL ; 

( ) ( )0,73.1760),( −=+∞L ; ( )∞+,0 . 
The range of p for which the obtained meniscus can be 
appropriate is: [ ] [ ] ][47.353,7.1169)(),( 11 PanLnL −−= . 

The computed ribbon half thickness for 
( ) ][85.584 PaLp −=∞+=  is equal to ][1032.1 4 m−⋅ . 

Since this half thickness is less than the desired half 
thickness ][102 4

1 mx −⋅= , the right 1p value has to be 
searched in the range 
[ ] ][]85.584;1169[))(),( 1 PaLnL −−=+∞ . 
Integrating, for different p values from this range, eqs.(7) 

for ][814.0)(';0)( 00 radxzxz c === α  it is found 

that for ][7841 Pap −=  the computed half thickness is 

equal to the desired half thickness ][102 4
1 mx −⋅= . 

  For ])[101(4 4
11 mxn −⋅== the range [ ])(),( 11 nLnL  is 

equal to ][]65.235;81.779[ Pa−− . The pressure ( )∞+= Lp  
is the same as above, ][85.584 Pa− , and the ranges 
[ ]))(),( 1 +∞LnL  and [ ])(),( 1nLL +∞  are ][]85.584;81.779[ Pa−−  
and ][]65.235;85.584[ Pa−− , respectively. Since for 

( ) ][85.584 PaLp −=∞+=  the computed ribbon half 
thickness is equal to ][1032.1 4 m−⋅ , which is greater than 

the desired half thickness ][101 4 m−⋅ , the right 1p value 
has to be searched in the 
range [ ] ][]65.235;85.584[)(),( 1 PanLL −−=+∞ . For 
different p values in this range, integrating the eqs.(7) for 

][814.0)(';0)( 00 radxzxz c === α  it is found that for 

][5221 Pap −=  the computed half thickness is equal to 
the desired half thickness ][101 4

1 mx −⋅= .  

Since the 1p value obtained for 1x  verifies: 
1

1 gm ppp −= , neglecting mp (the thermodynamic 
pressure due to the thermo-convection in strictly zero 
gravity is neglectible), it follows that 1

1 gpp −= . For the 
considered numerical values the results, including the 
meniscus heights 1h , are summarized in Table 1.  
 

Table 1. 
 

0x  1n  
1

0
1 n

xx =  1h  1p  gp  

[m]  [m] [mm] [Pa] [Pa] 
4×10-4 2  2×10-4 0.38 784−  784 
4×10-4 4  1×10-4 0.57 -522 522 
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4. The dependence on the shaper size 
 
In order to analyze the dependence on the shaper size, 

the procedure described in the sequence 3 was applied for 
][108 4

0 mx −⋅=  in order to create appropriate menisci 

for the same 1x values: 4][102 1
4

1 =⇔⋅= − nmx and 

8][10 1
4

1 =⇔= − nmx . The possible pressure ranges, 
which were investigated, are represented in Fig. 3. 
 
 

 
Fig. 3.  The possible p  ranges which have to be 

investigated for ][108 4
0 mx −⋅=  and .8;4=n  

 
 

The numerical results, including the meniscus heights 

1h , are given in Table 2.  
 

Table 2. 
 

0x  1n  
1

0
1 n

xx =  1h  1p  gp  

[m]  [m]    
[mm] 

[Pa] [Pa] 

8×10-4 4  2×10-4 1.13 -260.5 260.5 
8×10-4 8  1×10-4 1.33 -223.5 223.5 
 
 

5. Conclusions 
 
The Young-Laplace equation permits to determine the 

pressure of the gas flow introduced into the furnace (for 
release the heat) in order to create a convex static 
meniscus, appropriate for the growth of a single crystal 
ribbon with specified half thickness in strictly zero gravity. 

The numerical analysis reveals that the pressure and 
the meniscus size are highly dependent on the shaper half 
thickness. The obtained pressure differences, which have 
to be used in strictly zero gravity, are similar to those 
which have to be used on the ground [56]. The main 
difference is that in strictly zero gravity these differences 
have to be realized only by the choice of the pressure of 
the gas flow. 
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